MODULAR PSU VS. NON MODULAR + SINGLE +12V rail vs. Multiple

Associate
Joined
13 Nov 2008
Posts
1,032
Hi again,
how will you comment this topic:


DON'T LOSE POWER WITH MODULAR PLUGS


Due to their look, convenience, and cost savings for manufacturers, modular plugs have become a popular power supply feature. Unfortunately, there has been little or no discussion of the impact of this feature on overall performance and reliability. The fact is, modular plugs limit power by adding to electrical resistance. The voltage drop can be as much as would occur in 2 feet of standard wire. Worse yet, modular plugs utilize delicate pins that can easily loosen, corrode, and burn, creating the potential for a major system failure. That's why professional system builders specify uninterrupted wire!"



ARE MULTIPLE 12-VOLT RAILS BETTER THAN A SINGLE 12-VOLT RAIL?


With all the hype about multiple 12-volt rails (ads claim that two rails is better than one, five is better than four, etc.), you'd think it was a better design. Unfortunately, it's not!

Here are the facts: A large, single 12-volt rail (without a 240VA limit) can transfer 100% of the 12-volt output from the PSU to the computer, while a multi-rail 12-volt design has distribution losses of up to 30% of the power supply's rating. Those losses occur because power literally gets "trapped" on under-utilized rails. For example, if the 12-volt rail that powers the CPU is rated for 17 amps and the CPU only uses 7A, the remaining 10A is unusable, since it is isolated from the rest of the system.

Since the maximum current from any one 12-volt rail of a multiple-rail PSU is limited to 20 amps (240VA / 12 volts = 20 amps), PCs with high-performance components that draw over 20 amps from the same rail are subject to over-current shutdowns. With power requirements for multiple processors and graphics cards continuing to grow, the multiple-rail design, with its 240VA limit per rail, is basically obsolete.



__________________
 
Back
Top Bottom