FX5200 is nv34:
In a bold move that lays to waste NVIDIA's much-criticized "MX" philosophy of introducing new low-end graphics chips a generation behind the rest of its lineup, NVIDIA's new NV31 and NV34 chips both support Microsoft's latest DirectX 9 spec and even offer a little extra functionality above and beyond DirectX 9's official requirements. Here's a quick rundown of the features shared by NV30, NV31, and NV34.
Vertex shader 2.0+ - NV30's support for vertex shader 2.0+ carries over to NV31 and NV34, with all the bells and whistles included. Vertex shader 2.0+ offers some extra functionality over vertex shader 2.0, making the former a little more flexible.
Pixel shader 2.0+ - NV31 and NV34 also inherit all the features and functionality of NV30's pixel shaders 2.0+, which supports more complex pixel shader programs than even Microsoft requires for DirectX 9. In total, NV31 and NV34 support pixel shader programs a maximum of 1024 instructions in length. Most of ATI's R300-derived GPUs support pixel shader 2.0, whose maximum program length is only 64 instructions, though ATI's latest Radeon 9800 and 9800 Pro use an "F-buffer" to support shader programs with a theoretically "infinite" number of instructions. At least for now, ATI's "F-buffer" will only be available on high-end graphics cards, which means NVIDIA still has the edge on mainstream cards.