I'm trying to derive the factor formulae.
sinP + sinQ =2sin(P+Q/2)cos(P-Q/2) <<<< Prove this.
--
So I know that sin(A+B)= sinAcosB + cosAsinB & Sin(A-B) = sinAcosB - cosAsinB.
so sin(A+B) + sin(A-B) = sinAcosB + cosAsinB + sinAcosB - cosAsinB
sin(A+B) + sin(A-B) = 2sinAcosB.
P=A+B ... Q=A-B
Now I don't get this part..
It says A=P+Q/2 and B=P-Q/2.. How do you get to that?
sinP + sinQ =2sin(P+Q/2)cos(P-Q/2) <<<< Prove this.
--
So I know that sin(A+B)= sinAcosB + cosAsinB & Sin(A-B) = sinAcosB - cosAsinB.
so sin(A+B) + sin(A-B) = sinAcosB + cosAsinB + sinAcosB - cosAsinB
sin(A+B) + sin(A-B) = 2sinAcosB.
P=A+B ... Q=A-B
Now I don't get this part..
It says A=P+Q/2 and B=P-Q/2.. How do you get to that?