Deleted member 61728
Deleted member 61728
What is the hardest to break cipher that can be used to encrypt plain text using just a pen and paper no computer involved and no mathematician required ?
Thought it was, but how long would the worlds fastest supercomputer take to decrypt a properly encrypted plain text message of say 10 lowercase letters done using the one time pad cipher without knowing the key?
wiki said:Example
Suppose Alice wishes to send the message "HELLO" to Bob. Assume two pads of paper containing identical random sequences of letters were somehow previously produced and securely issued to both. Alice chooses the appropriate unused page from the pad. The way to do this is normally arranged for in advance, as for instance 'use the 12th sheet on 1 May', or 'use the next available sheet for the next message'. The material on the selected sheet is the key for this message. Each letter from the pad will be combined in a predetermined way with one letter of the message. It is common, but not required, to assign each letter a numerical value: e.g. "A" is 0, "B" is 1, and so on. In this example, the technique is to combine the key and the message using modular addition. The numerical values of corresponding message and key letters are added together, modulo 26. If key material begins with "XMCKL" and the message is "HELLO", then the coding would be done as follows:
If a number is larger than 25, then the remainder after subtraction of 26 is taken in modular arithmetic fashion. This simply means that if your computations "go past" Z, you start again at A.Code:H E L L O message 7 (H) 4 (E) 11 (L) 11 (L) 14 (O) message + 23 (X) 12 (M) 2 (C) 10 (K) 11 (L) key = 30 16 13 21 25 message + key = 4 (E) 16 (Q) 13 (N) 21 (V) 25 (Z) message + key (mod 26) E Q N V Z → ciphertext
The ciphertext to be sent to Bob is thus "EQNVZ". Bob uses the matching key page and the same process, but in reverse, to obtain the plaintext. Here the key is subtracted from the ciphertext, again using modular arithmetic:
Code:E Q N V Z ciphertext 4 (E) 16 (Q) 13 (N) 21 (V) 25 (Z) ciphertext - 23 (X) 12 (M) 2 (C) 10 (K) 11 (L) key = -19 4 11 11 14 ciphertext — key = 7 (H) 4 (E) 11 (L) 11 (L) 14 (O) ciphertext — key (mod 26) H E L L O → message
Similar to the above, if a number is negative then 26 is added to make the number positive.
Thus Bob recovers Alice's plaintext, the message "HELLO". Both Alice and Bob destroy the key sheet immediately after use, thus preventing reuse and an attack against the cipher.
Attempt at cryptanalysis
Suppose Eve intercepts Alice's ciphertext: "EQNVZ". If Eve had infinite computing power, she would quickly find that the key "XMCKL" would produce the plaintext "HELLO", but she would also find that the key "TQURI" would produce the plaintext "LATER", an equally plausible message:
Code:4 (E) 16 (Q) 13 (N) 21 (V) 25 (Z) ciphertext − 19 (T) 16 (Q) 20 (U) 17 (R) 8 (I) possible key = −15 0 −7 4 17 ciphertext-key = 11 (L) 0 (A) 19 (T) 4 (E) 17 (R) ciphertext-key (mod 26)
In fact, it is possible to "decrypt" out of the ciphertext any message whatsoever with the same number of characters, simply by using a different key, and there is no information in the ciphertext which will allow Eve to choose among the various possible readings of the ciphertext
Thought it was,but how long would the worlds fastest supercomputer take to decrypt a properly encrypted plain text message of say 10 lowercase letters done using the one time pad cipher without knowing the key?
impossible to break.
Cia,mi6,nsa etc they must break it often surely ?
in a big long document then it can be obvious when you've decrypted it as it'll start making sense![]()
It isn't because there will be a quadrillion plaintexts for that ciphertext that make sense.![]()