Vertical axis g-force
Aircraft, in particular, exert g-force along the axis aligned with the spine. This causes significant variation in blood pressure along the length of the subject's body, which limits the maximum g-forces that can be tolerated.
In aircraft, g-forces are often towards the feet, which forces blood away from the head; this causes problems with the eyes and brain in particular. As g-forces increase brownout/greyout can occur, where the vision loses hue. If g-force is increased further tunnel vision will appear, and then at still higher g, loss of vision, while consciousness is maintained. This is termed "blacking out". Beyond this point loss of consciousness will occur, sometimes known as "g-loc" ("loc" stands for "loss of consciousness"). While tolerance varies, a typical person can handle about 5 g (49m/s²) before g-loc'ing, but through the combination of special g-suits and efforts to strain muscles—both of which act to force blood back into the brain—modern pilots can typically handle 9 g (88 m/s²) sustained (for a period of time) or more (see High-G training).
Resistance to "negative" or upward gees, which drive blood to the head, is much lower. This limit is typically in the −2 to −3 g (−20 m/s² to −30 m/s²) range. The subject's vision turns red, referred to as a red out. This is probably because capillaries in the eyes swell or burst under the increased blood pressure.
Humans can survive up to about 20 to 35 g instantaneously (for a very short period of time). Any exposure to around 100 g or more, even if momentary, is likely to be lethal, although the record is 179 g.[2] It has also been said that the height of a person can be shortened if high g-force is sustained for a continuos amount of time.