Maths Help Please! :)

y''= [-sinx(1+sinx) - (cosx)(cosx)]/(1+sinx)^2
y'' = [-sinx - [(sinx)^2 + (cosx)^2)] / (1 + sinx)^2
= -(sinx + 1) / (1 + sinx)^2
= -1 / (1 + sinx)

Only simplification is (sinx)^2 + (cosx)^2 = 1, although I guess you figured it out by now :p
 
d/dx[arctan(2x)/(1+4x^2)]

--> y" = [2/(1+4x^2).(1+4x^2) - 8(x)arctan(2x)] /(1+4x^2)^2

--> y" = (2 - 8(x)arctan(2x)) / (1+4x^2)^2

so yep, get the same as your edit :)
 

After using the chain rule you should have:

1/[sqrt(1 - (1/sqrt(1+x))^2))] * -1/[2*(1+x)^(3/2)]

=

1/[sqrt(1-1/(1+x))] * -1/[2*(1+x)^(3/2)]

=

-1/[sqrt(x/1+x)] * 1/[2(1+x)^(3/2)]

=

-1 /[ 2*(x)^(1/2) * (1+x)^(-1/2) * (1+x)^(3/2)]

=

-1/[2*sqrt(x)*(1+x)]

which is equivalent to what stated on the site.
 
Back
Top Bottom