Simple question, if the Bulldozer/Piledriver architecture is so good then why are AMD heavily rumoured to be dumping it and going back to the classic SMT based architecture?
http://scalibq.wordpress.com/2012/02/14/the-myth-of-cmt-cluster-based-multithreading/
http://scalibq.wordpress.com/2012/02/14/the-myth-of-cmt-cluster-based-multithreading/
And that’s why SMT works, and CMT doesn’t: AMD’s previous CPUs also had 3 ALUs per thread. But in order to reduce the size of the modules, AMD chose to use only 2 ALUs per thread now. It is a case of cutting off one’s nose to spite their face: CMT is struggling in single-threaded scenario’s, compared to both the previous-generation Opterons and the Xeons.
But what does CMT bring, effectively? Nothing. Their chips are much larger than the competition’s, or even their own previous generation. And since the Xeon is so much better with single-threaded performance, it can stay ahead in heavy multithreaded scenario’s, despite the fact that SMT does not scale as well as CMT or SMP. But the real advantage that SMT brings is that it is a very efficient solution: it takes up very little die-space. Intel could do the same as AMD does, and put two dies in a single package. But that would result in a chip with 12 cores, running 24 threads, and it would absolutely devour AMD’s CMT in terms of performance.
So I’m not sure where AMD thinks that CMT is ‘more efficient’, since they need a much larger chip, which also consumes more power, to get the same performance as a Xeon, which is not even a high-end model. The Opteron 6276 tested by Anandtech is the top of the line. The Xeon X5650 on the other hand is a midrange model clocked at 2.66 GHz. The top model of that series is the X5690, clocked at 3.46 GHz. Which shows another advantage of smaller chips: better clockspeed scaling.