** The Official Space Flight Thread - The Space Station and Beyond **

How long can the liquid fuel be stored for? Or do they have to pump it all out and refill tomorrow?

Brilliant picture as well.

The tanks are not designed for long term cryogenic fuel storage. De-tanking occurs immediately after scrub in order to make the rocket and launch pad safe. The rocket will be re-fuelled just before its next launch attempt.
 
neilbg800.jpg



 
681054mainpia16105full1.jpg


Layers at the Base of Mount Sharp

A chapter of the layered geological history of Mars is laid bare in this postcard from NASA's Curiosity rover. The image shows the base of Mount Sharp, the rover's eventual science destination.

This image is a portion of a larger image taken by Curiosity's 100-millimeter Mast Camera on Aug. 23, 2012. See PIA16104. Scientists enhanced the color in one version to show the Martian scene under the lighting conditions we have on Earth, which helps in analyzing the terrain.

For scale, an annotated version of the figure highlights a dark rock that is approximately the same size as Curiosity. The pointy mound in the center of the image, looming above the rover-sized rock, is about 1,000 feet (300 meters) across and 300 feet (100 meters) high.
 
684583mainpia15699full1.jpg

Camera on Curiosity's Arm as Seen by Camera on Mast

The left eye of the Mast Camera (Mastcam) on NASA's Mars rover Curiosity took this image of the camera on the rover's arm, the Mars Hand Lens Imager (MAHLI), during the 30th Martian day, or sol, of the rover's mission on Mars (Sept. 5, 2012). MAHLI is one of the tools on a turret at the end of the rover's robotic arm. When this image was taken, the arm had raised the turret to about the same height as the camera on the mast. The Mastcam's left eye has a 34-millimeter focal length lens.

The image shows that MAHLI has a thin film or coating of Martian dust on it. This dust accumulated during Curiosity's final descent to the Martian surface, as the Mars Science Laboratory spacecraft's descent stage (or sky crane) engines were disrupting the surface nearby.

Effects of the dust were seen in the first image taken of Mars by MAHLI, on the day after landing (http://photojournal.jpl.nasa.gov/catalog/PIA15691). The MAHLI lens is protected from dust accumulation by a transparent dust cover. If the dust cover were clean, the images would appear as clear as if the cover were open.

The reddish circle near the center of the Mastcam Sol 30 image is the window of MAHLI's dust cover, with a diameter a little less than a soda can's diameter. Inside the lens, each of the nine glass lens elements and the front sapphire window are bonded or cemented in place by a red-colored silicone RTV (room temperature vulcanizing) material. This is a space-qualified "glue" that holds the lens elements in place. When the MAHLI is viewed from certain angles, this material gives one the impression that the inside of the lens is red.

The mechanism at the right in this image is Curiosity's dust removal tool, a motorized wire brush.

Image credit: NASA/JPL-Caltech/MSSS
 
Back
Top Bottom